
Page 1 of 14

© University Assessment Office - Illinois State University

MSCS ASSESSMENT PLAN
School of Information Technology

Program Educational Objectives:

The program educational objectives (PEO) of the computer science program are as
follows:

A. Be a successful practitioner or researcher in a computer science related
field or pursuing a PhD.

B. Be able to apply theory and development skills to design creative and
effective solutions to practical computing problems.

C. Demonstrate effective teamwork and leadership skills

D. Communicate effectively using different modalities

Student Outcomes:

At the time of graduation, a student in our computer science program will have the
ability to:

1. Demonstrate an in-depth knowledge of software engineering and its

application to the broader area of computer science.

2. Demonstrate an in-depth knowledge of operating systems and its

application to the broader area of computer science.

3. Demonstrate an in-depth knowledge of theory, algorithm design, and their

applications in computer science

4. Demonstrate an in-depth knowledge of machine learning and big data and

their applications in computer science

5. Communicate effectively in various professional contexts

6. Function effectively as a member or leader of a team engaged in computer

science-related activities.

Page 2 of 14

© University Assessment Office - Illinois State University

Relationship of Student Outcomes to Program Educational Objectives
The table below summarizes the relationship between student outcomes and program educational
objectives:

 Program Educational Objectives

Student Outcomes A B C D

1 × ×

2 × ×

3 × ×

4 × ×

5 × x

6 x

Page 3 of 14

© University Assessment Office - Illinois State University

1. Demonstrate an in-depth knowledge of software engineering and its application to the broader area of computer science.

Performance Indicator
students should be able to

Delivery
Course/Methods

Courses used
for

Assessment

Assessment
Methods

Data Needed

Assessed
Groups

Expected level
of

attainment*
Timeline

a. Demonstrate a comprehensive
understanding of software
methodologies, their usage, and ability
to analyze their applicability to a
problem.

IT 426 IT 426 Rubric 1(a)
IT 426: Project

and Assignments
IT 426

students
70% Odd Spring

b. Demonstrate knowledge of software
architectures, their implementation and
evaluate them to a problem

IT 426 IT 426 Rubric 1(b) IT 426: Project
IT 426

students
70% Odd Spring

c. Apply software design principles, design
patterns, and their best practices
towards software design and
implementation

IT 426 IT 426 Rubric 1(c)
IT 426: Project or

Assignments

IT 426
students

70%

Odd Spring

d. Understand software testing, testing
strategies, and ability to write software
tests

IT426 IT426 Rubric 1(d) IT 426: Project
IT 426

students
70% Odd Spring

Page 4 of 14

© University Assessment Office - Illinois State University

Rubric 1(a): Software Methodologies

 Poor or Non-Existent Developing Developed Exemplary

Understands Agile
methodologies their
principles, and usage

Does not show any
understanding of Agile

methodologies and their
principles

Understands the Agile methodologies
and their principles but

misunderstands their usage in various
contexts

Understands the Agile
methodologies, their

principles and usage in
general for various contexts

Understands the Agile
methodologies, their principles, and
usage in various context, while also

explaining in detail the pros and cons
of using an Agile methodology.

Rubric 1(b): Software Architecture

 Poor or Non-Existent Developing Developed Exemplary

Understands different
software architecture

and their principles

Does not show any
understanding of software

architectures and their
principles

Understands the software
architectures and their principles but

misunderstands the difference
between them

Understands software
architectures, their

principles, and differences
between them

Understands software architectures,
their principles, differences between

them, and also pros and cons of
using a software architecture for

various contexts

Demonstrates the
ability to use software

architectures

Does not show any
understanding of how to

use software architectures
to solve a problem

Demonstrates the ability to use
software architectures to solve a

problem but in general, is confused
about the choices for a problem

Demonstrates the ability to
use software architecture(s)

to solve a problem

Demonstrates the ability to use
software architecture(s) to solve a

problem along with a detailed
analysis of different architectural

approaches for the problem

Rubric 1(c): Software Design Principles and Patterns

 Poor or Non-Existent Developing Developed Exemplary

Understands the
software design

principles and patterns

Does not show any
understanding of software

design principles and
patterns

Understands software design
principles and patterns but

misunderstands the difference
between them

Understands software design
principles and patterns and the

difference between them

Understands software design
principles and patterns,

differences between them, and
also pros and cons of using them

in various context

Page 5 of 14

© University Assessment Office - Illinois State University

Demonstrates the
ability to use software
design principles and

patterns to solve
problems

Does demonstrates any
understanding how to

implement software design
principles and patterns

Demonstrates the ability to use
software design principles and

patterns to solve a problem but is
confused about the choices for a

given problem

Demonstrates the ability to use
software design principles and

patterns to solve a problem

Demonstrates the ability to use
software design principles and

patterns to solve a problem with
a detailed analysis of the

different approach

Rubric 1(d): Software Testing

 Poor or Non-Existent Developing Developed Exemplary

Demonstrates the
ability to perform
software testing

Does not have the ability to
perform software testing

Demonstrates the ability to perform
software testing and its principles but

misuses them for a given problem

Demonstrates the ability to
perform software testing in
line with software testing

principles and best practices
for a given problem

Demonstrates the ability to perform
software testing in line with

software testing principles and best
practices by laying out a detailed
testing strategy/plan for a given

problem

2. Demonstrate an in-depth knowledge of operating systems and its application to the broader area of computer science.

Performance Indicator
students should be able to

Delivery
Course/Methods

Courses used
for Assessment

Assessment
Methods

Data Needed

Assessed
Groups

Expected level
of

attainment*
Timeline

a. Demonstrate the knowledge of
operating system. IT 483 IT 483 Rubric 2(a)

IT 483: Tests and
assignments that deal
with operating system.

IT 483
students

70%

Odd Fall

b. Apply the knowledge of
operating system to analyze and
organize the infrastructure of a
computing system

IT 483, IT 382 IT 483 Rubric 2(b)

IT 483: Tests, homework,
programming

assignments, and final
project.

IT 483
students

70% Odd Fall

Page 6 of 14

© University Assessment Office - Illinois State University

Rubric 2(a): demonstration of operating system knowledge

 Poor or Non-Existent Developing Developed Exemplary

Demonstrates an
understanding of the

structure of an operating
system and identify the
policies and algorithms

used for process
management, memory
management, process
synchronization, file
system, I/O device

management.

Does not show any
understanding of the major
components of operating
systems such as process,

thread, paging, scheduler,
interprocess

communication, file
system, I/O device drivers.

Explains the major components
of operating systems such as

process, thread, paging,
scheduler, interprocess

communication, file system, I/O
device drivers, but does not

demonstrate the understanding
of policies and algorithms used

for process management,
memory management, process
synchronization, file system, I/O

device management.

Explains the major components
of operating systems such as

process, thread, paging,
scheduler, interprocess

communication, file system, I/O
device drivers, and
demonstrates the

understanding of policies and
algorithms used for process

management, memory
management, process

synchronization, file system, I/O
device management.

Explains the major components of
operating systems and the policies

and algorithms used for process
management, memory management,
process synchronization, file system,
I/O device management. In addition,
explains the benefits and limitations

of different policies or algorithms
(e.g., paging vs. segmentation, log
file system and original Unix file

system).

Demonstrates an
understanding of software

factors determining the
computing performance
and how to analyze the

performance.

Does not show any
understanding of software

factors determining
computing performance
and how to analyze the
performance using the

given performance
parameters.

Explains the software factors
determining computing

performance and how to
analyze the performance using

the given performance
parameters (e.g., mutli-core
CPU architecture, pipelining

CPU architecture, cache hit rate,
TLB miss rate, structure of page

table, disk access time, and
multithreaded programming),

but does not demonstrate how
to analyze performance using

given performance parameters.

Explains the software factors
determining computing

performance and how to
analyze performance using the
given performance parameters

(e.g., mutli-core CPU
architecture, pipelining CPU

architecture, cache hit rate, TLB
miss rate, structure of page
table, disk access time, and

multithreaded programming).

Explains the software factors
determining computing performance
and how to analyze the performance

using the given performance
parameters and explains the benefits

and limitations of different
approaches to enhance computing

performance.

Page 7 of 14

© University Assessment Office - Illinois State University

Rubric 2(b): Apply operating system knowledge to solve problems

 Poor or Non-Existent Developing Developed Exemplary

Apply the knowledge
operating system to analyze

and organize the
infrastructure of a computing

system.

Does not a show
comprehensive

understanding of
operating systems

Understands operating system
and know how the performance

of a computing system is
affected by the operating

system

Being to apply the knowledge to
analyze the performance of a

computing based on operating
system.

Being to apply the knowledge to
implement or deploy a operating

system and analyze its
performance based on

application.

3. Demonstrate an in-depth knowledge of theory, algorithm design, and their applications in computer science

Performance Indicator
Students should be able to

Delivery
Course/Methods

Courses used
for

Assessment

Assessment
Methods

Data Needed

Assessed
Groups

Expected
level of

attainment*
Timeline

a. Demonstrate a comprehensive
knowledge of computing theory including
being able to solve computational
problems and identify the limitation of
computation.

IT 428 IT 428 Rubric 3(a)

IT 428: Tests,
homework, and
programming
assignments.

IT 428
students

70% Even Fall

b. Being able design, analyze, and
implement varieties of algorithms to
solve computing problem.

IT 427 IT 427 Rubric 3(b)

IT 427: Tests,
homework,

programming
assignments, and

final project.

IT 427
students

70% Odd Fall

Rubric 3(a): Theory

 Poor or Non-Existent Developing Developed Exemplary

Deterministic vs.
Nondeterministic
models.

Do not know the meaning
and difference between
the two models.

Be aware of the difference
between the two models and
know how to use the
nondeterministic model to
describe/solve a few problems.

Know how to use the
nondeterministic model to
describe/solve all typical problems
and understand its complexity
implications in classical models.

Understand the complexity and
computability implications of the
nondeterministic model under
different constraints and the
separation between complexity

Page 8 of 14

© University Assessment Office - Illinois State University

classes. (e.g., NFA vs DFA, PDA vs
DPDA, P vs NP)

Turing Machines and
Computability.

Do not know the definition
of Turing machines and the
issue of computability.

Knows the definition,
components, and operations of
Turing machines and know how
to use Turing machine to accept
some non-regular and non-
context-free languages.

Knows the concept of
computability and Universal Turing
Machines and know the limitation
of Turing Machines and be able to
identify a few undecidable
problems. Also, know the
technique of diagonalization and
dove tailing in the context of
computability.

Know the degrees beyond Turing
computable such as Recursively
Enumerable and Co- Recursively
Enumerable and know the technique
of Turing reduction.

Regular Languages and
Finite State Machines.

Do not know and
understand the definition
of regular languages.

Know at least two of the three
formalisms to describe regular
languages, i.e., Regular
expressions, Regular Grammars,
and Finite State Automata.

Know all equivalent formalisms for
regular languages and know how
to convert from one to another.

Know how to optimize Finite State
Machines (from NFA to DFA and
minimize the state) and the
limitation of regular languages.

Context-free
Languages and Push-
Down Automata.

Do not know and
understand the definition
of context-freer languages.

Know Context-free Grammars
and Pushdown Automata.

Know how to convert between
Context-free grammar and
Pushdown Automata.

Can Identify some ambiguous
Context-free languages and the
limitation of deterministic Pushdown
Automata.

Rubric 3(b): Algorithms

 Poor or Non-Existent Developing Developed Exemplary

Advanced Data Structures

Have trouble to
understand and

implement basic data
structures, such as linked
lists, tree, binary search

trees.

Understand and being able to
implement basic data structures
and know how to analyze their

time/space complexity.

Understand and being able to
implement some advanced data
structures such as red-black tree,

B-tree, Huffman tree, and
varieties of heaps.

Know how to implement and
analyze time/space complexity

of advanced data structure
covered in the class and know
how to use them in different

algorithm.

Big-O and Asymptotic
notations.

Do not know how to
compare the efficiency of

algorithms using big-O
notations.

Being able to use big-O notations
in the analysis of some simple

algorithms (like straightforward
nested loop in the worst cases)

Know how to use big-O notations
to analyze most algorithms

including recursive functions in
the worst¸ best, and average

cases.

In addition to the developed
concepts described in the

previous column, know other
asymptotic notations and know

their applications.

Page 9 of 14

© University Assessment Office - Illinois State University

but fail to analyze average cases
and recursion.

Divide and Conquer
Do not know what is
divide and conquer

approach.

Know the concept of divide and
conquer algorithms but fail to

correctly apply the approach to
solve problems.

Being able to correctly
implement divide and conquer

algorithms to solve some typical
problems.

Being able to correctly
implement divide and conquer
algorithms and know how to

analyze their time complexity.

Dynamic Programming and
Greedy Methods.

Do not know the concepts
of dynamic programming

and greedy methods.

Know the differences between
dynamic programming and

greedy methods but fail to apply
the concepts to solve problems.

Being able to correctly
implement dynamic

programming and greedy
methods to solve some typical

problems.

Being able to correctly
implement dynamic

programming and greedy
methods and know how to
analysis their time/space

complexity.

The concepts of NP-
Completeness.

Do not know P vs NP.
Know the definitions of P, NP,

and NPC.

Know how to prove some typical
problems being NPC and the

implication of NP=P.

Know common approaches to
prove or disprove NP=P. Also

know some problem and Co-NP
and beyond.

4. Demonstrate an in-depth knowledge of machine learning and big data and their applications in computer science

Performance Indicator
Students should be able to

Delivery
Course/Methods

Courses used
for Assessment

Assessment
Methods

Data Needed

Assessed
Groups

Expected level
of attainment*

Timeline

a. Write queries to interact
with big data storage
systems efficiently

IT 441 IT 441 Rubric 4(a)

IT441: Projects,
Exams or

Assignments
IT 441 students 70% Even Fall

b. Compare and contrast
appropriate evaluation metrics
for supervised learning
predictive tasks

IT 448 IT 448 Rubric 4(b)

IT448: Projects,
Exams or

Assignments IT 448 students 70% Even Spring

Page 10 of 14

© University Assessment Office - Illinois State University

c. Compare and contrast
appropriate evaluation metrics
for supervised learning
predictive tasks

IT 448 IT 448 Rubric 4(c)

IT448: Projects,

Exams or
Assignments

IT 448 students 70% Even Spring

Rubric 4(a): Big Data and Storage

 Poor or Non-Existent Developing Developed Exemplary

Write queries to interact with
big data storage systems
efficiently

Does not know the query
syntax

Writes queries to retrieve, store,
update big data in big data
storage systems, but the queries
may not always work correctly

Successfully writes and executes
various queries to big data
storage systems based on full
understanding of the given big
data architectures. The queries
include retrieving, storing, and
updating data

Successfully writes and
executes various queries to big
data storage systems based on
full understanding of the given
big data architectures. The
queries include retrieving,
storing, and updating data.
Also, demonstrate how the
query results can be used for
data analysis

Rubric 4(b): Classification Problems

 Poor or Non-Existent Developing Developed Exemplary

Design and implement
an effective solution to
classification problem

Classification program does
not work. Does not address
effective strategies for data
preprocessing,
representations, and
partitioning into training
and testing sets.

Classification program works partially.
Partially addresses effective strategies
for data preprocessing,
representations, and partitioning into
training and testing sets.

Classification program works
correctly. Addresses effective
strategies for data
preprocessing,
representations, and
partitioning into training and
testing sets.

Classification program works
correctly. Addresses effective
strategies for data preprocessing,
representations, partitioning into
training and testing sets, and
selecting hyperparameters.

Rubric 4(c): Metrics for Supervised Learning

 Poor or Non-Existent Developing Developed Exemplary

Page 11 of 14

© University Assessment Office - Illinois State University

Compare and contrast
appropriate evaluation
metrics for supervised
learning predictive
tasks

Does not use correct
evaluation metrics and does
not reach correct
conclusions

Develops partially correct evaluation
metrics and reaches partially correct
conclusions

Develops correct evaluation
metrics and reaches correct
conclusions

Identifies and presents detailed and
correct evaluation and reaches
correct conclusion.

5. Communicate effectively in various professional contexts

Performance Indicator
Delivery
Methods

Courses used for
Assessment

Assessment
Methods

Data Needed

Assessed
Groups

Expected
level of

attainment *
Timeline

a. Communicates

effectively with

other professional

(Oral)

IT 426, IT 483, IT
388

IT 426 Rubric 5(a) Project Presentation IT 426 students 70% Odd Spring

Rubric 5(a)

 Poor or Non-Existent Developing Developed Exemplary

Clarity Not assertive or clear Vague or inconsistent in presentation Clear and easy to understand
Clear, assertive, and very easy to

understand

Organization
Not well organized, no logical

flow
Inconsistent flow, lacking macro or

micro-organization
Logically organized at micro and

macro level
Entire communication has logical

flow, flow is reinforced throughout

Audience
Not aimed at the intended

audience

Reflects own knowledge rather than
targeting audience, should have taken
more efforts to direct talk at audience

Directed at appropriate
audience

Targeting audience well enough to
enhance communication

Engaging the
audience

Not captivating, could not
engage audience, little to no

interaction with audience

Some engagement, but not enough
interaction with audience

Keeps the audience interested
and has some interaction

Keeps the audience awake and
involved, occasionally adapting to

audience’s feedback

Page 12 of 14

© University Assessment Office - Illinois State University

Delivery

Two or more of: Spoke too
fast/too slow, did not address

intended questions,
inappropriate attire, took

significantly longer or shorter
than allotted time

One of: Spoke too fast/too slow, too
many pauses, awkward body language

Spoke at appropriate pace,
comfortable and appropriate

body language

Calm. Clear diction. Good tone.
Good pacing. Appropriate attire and

personal grooming.

6. Function effectively as a member or leader of a team engaged in computer science-related activities

Performance Indicator
Delivery
Methods

Courses used for
Assessment

Assessment
Methods

Data Needed

Assessed
Groups

Expected
level of

attainment *
Timeline

a. Participates in team

activities
IT 426, IT 388 IT 426 Rubric 6(a) Peer evaluation IT 426 students 70% Odd Spring

b. Completes the

project on time
IT 426, IT 388 IT 426 Rubric 6(b) Project deliverables IT 426 students

70%

Odd Spring

c. Leads

team

activities

IT 426, IT 388 IT 426 Rubric 6(c) Peer evaluation IT 426 students 70% Odd Spring

Rubric 6: Teamwork and leadership

 Poor or Non-Existent Developing Developed Exemplary

a. Participates in team
activities

Does not contribute to

any team activities

Contributes occasionally to
team activities

Contributes equally to team
activities

Contributes to team activities, takes

initiative, and helps other team members

b. Completes the project
on time

Does not complete the

project on time

Completes a subset of project
requirements

Satisfactorily completes all
the project requirements

Completes all the project requirements and
establishes detailed documentation on the

Page 13 of 14

© University Assessment Office - Illinois State University

project design, implementation, and other
artifacts

c. Leads team activities

Does not establish a
project plan, assign tasks

to individual team
members, and track

their progress

Establishes a project plan, but
does not assign

responsibilities to team
members and track their

progress

Establishes a project plan,
assigns responsibilities to all

team members, and tacks
their progress periodically

satisfactorily

Establishes a project plan, assigns
responsibilities to all team members, tacks

their progress periodically, mentor and
motivate the team members to meet

individual and team goals

Page 14 of 14

© University Assessment Office - Illinois State University

MSCS-2-year assessment cycle (Quick overview for implementation)

Semester Course to be Assessed What is assessed

Even Spring 448 4(b), 4(c)

Odd Fall
427 3(b)

483 2(a), 2(b)

Odd Spring 426 1(a), 1(b), 1(c), 1(d), 5(a), 6(a), 6(b), 6(c)

Even Fall
428 3(a)

441 4(a)

