Illinois State University Department of Physics

B.S. in Physics Assessment Plan

September 2018

Introduction

It is increasingly important for educational programs to have ongoing reviews of courses and curriculum in an effort to improve quality and ensure relevance and to meet the needs of students and their potential employers. Part of that process is to undertake periodic assessment of student learning at the introductory, intermediate, and advanced undergraduate stages via a variety of direct and indirect measures outlined in this plan.

The mission of the Department of Physics strongly reflects its dedication to the education of students. The mission of the department is

- 1. Provide a high quality undergraduate physics experience, offering physics, computational physics, and physics teaching degrees as well as a dual degree program in engineering and physics, with the goal of becoming the first choice school in physics for Illinois students.
- 2. Carry out research and scholarship that is recognized on a national and international level.
- 3. Maintain and expand a vigorous undergraduate research program that is second to none nationally by providing a supportive learning environment in which undergraduate students are active participants in forefront research.
- 4. Provide meaningful co-curricular activities, offering students significant experiences applying their skills and knowledge to a variety of out-of-class projects.
- 5. Maintain the preeminent undergraduate physics teacher education program in Illinois and further establish its national reputation.
- 6. Provide a robust computational physics program, including integration of computational methods into all physics major courses and offering a bachelor's degree in Computational Physics, unique in the nation, focusing on computer simulation of physical systems.
- 7. Maintain and continue to develop effective courses that support the University-wide commitment to general education.
- 8. Provide a strong outreach and public education program that extends to members of the campus, the wider community, and the profession, and which serves the public interest by sharing our experience and expertise through educational activities, scientific analysis and explanation, and a continuing effort to foster scientific literacy.

Sequences and Learning Objectives

The department currently offers four sequences within the B.S. Physics major. They are: physics (PHY), computational physics (CPY), engineering-physics (3-2 program) (EGP), and physics teacher education (PTE). During the first two years of these sequences, students take a common core of courses:

Course	Title

- 107 Frontiers in Physics
- 110 Physics for Scientists and Engineers I
- 111 Physics for Scientists and Engineers II
- 112 Physics for Scientists and Engineers III
- 217 Methods of Theoretical Physics
- 220 Mechanics
- 240 Electricity & Magnetism
- 270 Experimental Physics
- 284 Quantum Mechanics

Note that the PTE majors take either 240 or 284 as they are not required to take both courses.

Objective Students will demonstrate at least a basic level of competency in	Assessment Tools	Related Courses
conceptual understanding and application of physical laws.		PHY 110, 111, 112
mathematics (calculus and vector analysis).	Exams and other assignments	MAT 145, 146, and 147 and core physics courses
computer skills: elementary programming and graphical visualization of data.	Computer assignments in physics courses, exams and assignments	PHY 107 – 112 IT 165, 166, or 168
elementary experimental techniques.	lab reports and/or data sheets in introductory lab sections	PHY 110, 111, 112
modeling and solving real-world problems.	quantitative problems (on exams, homework, online exercises) that focus on translating physical situations into physics models, integrative problems that incorporate real- world physics, out-of-class projects, and research experiences	PHY 110, 111, 112 Project-based or research progress for those participating
communication of scientific data, results, and analysis.	written assignments, including homework, lab, and computer assignments	PHY 107, 110, 111, 112

Common	Coro	Loorning	Objectives	Introductory	LOTO
Common	COLE	Learning	Oblectives.	Introductory	Level
		··· (7			

Objective Students will demonstrate at least an intermediate level of competency in	Assessment Tools	Related Courses
conceptual understanding, physical intuition, and application of physical laws.	homework, exams, and other assignments	PHY 217, 220, 240, 270, and 284
mathematics (vector calculus, linear algebra, and differential equations).	sophisticated problems that may include proofs or rigorous derivations completed in homework, exams, or other assignments	MAT 175 and 340 PHY 217 and application of these methods in intermediate physics courses
computer analysis (numerical methods, symbolic computing, 2D visualization).	computer projects involving analysis and solution of physics problems using numerical methods	PHY 220, 240, 270, and 284 application of these methods in research
experimental methods (sophisticated measurement methods, uncertainty and error analysis).	full lab reports, posters, or oral presentations	PHY 270 application of these methods in research
modeling and approximation skills (including applying symmetry as a tool for physical situations and problem solving).	homework, exams, and other assignments requiring these skills	PHY 217, 220, 240, 270, and 284
scientific communication.	written assignments, including homework, lab reports, computer projects, posters, and oral presentations	PHY 217, 220, 240, 270, and 284 research presentations at symposia or conferences

Common Core Learning Objectives: Intermediate Level

Advanced courses in the Physics sequence include the following:

Course Title

- 307 Seminar In Physics
- 320 Mechanics II
- 325 Thermal Physics
- 330 Optical Physics
- 340 Electricity & Magnetism II
- 355 Solid State Physics
- 370 Advanced Experimental Physics
- 371 Biophysics of Neurological Systems
- 375 Electronics for Scientists
- 380 Topics in Contemporary Physics
- 384 Quantum Mechanics II
- 387 Methods of Mathematical Physics

Objective		
Students will demonstrate an advanced level of competency in	Assessment Tools	Related Courses
conceptual understanding, physical intuition, and application of physical laws.	homework problems, exams and other assignments are more detailed and complex	PHY 320, 325, 340, 384 and other 300-level physics electives
mathematics (partial differential equations, Fourier analysis, eigenanalysis, etc.).	sophisticated problems that may include proofs or rigorous derivations completed in homework, exams, or other assignments	300-level physics (or equivalent level engineering) courses and corresponding mathematics courses
computational physics (simulation methods, symbolic computing, and visualization)	computer projects that demonstrate application of these methods	advanced computational projects for physics and/or computer courses or research
experimental physics (design and implementation of experiments, computer interfacing, data acquisition and analysis).	experimental projects	PHY 370 research projects
modeling of physical phenomena (solution methodology, computer development, and implementation).	computer assignments and homework problems	300-level physics courses research projects
scientific communication.	written assignments, including homework, lab reports, computer projects, posters, and oral presentations	PHY 307 and 370 research project reports oral and/or poster presentations at conferences

Learning Objectives: Advanced Level: Physics and Engineering-Physics

Learning Objectives for Physics Teacher Education Sequence

The Physics Teacher Education sequence has developed an assessment plan in concert with the National Science Teachers Association Standards for Science Teacher Preparation.

Specialized courses in the Physics Teacher Education sequence include the following:

Course	Title
205	Origin of the Universe
208	Astronomy and Space Science
209	Introduction to Teaching High School Physics
302	Computer Applications in High School Physics
310	Reading for Teaching High School Physics
311	Teaching High School Physics
312	Physics Teaching from the Historical Perspective
353	Student Teaching Seminar

NSTA Standard 1: Content

The student teacher understands and can articulate the knowledge and practices of contemporary science; can interrelate and interpret important concepts, ideas and applications in their field of licensure; and can conduct scientific investigations. (All required PHY courses)

Dimensions	Unacceptable (0)	Basic (1)	Proficient (2)	Accomplished (3)
1a. Concepts	Shows through teacher	Demonstrates strong	Exhibits a	Presents a strong,
and principles	performance and	and significant	conceptual	flexible understand-
understood	inadequate or very limited	understanding of the	understanding of	ing of the major
through	understanding of physics	major concepts in all	concepts in all	conceptual
science.	content knowledge; makes	fields for which	fields taught and	interrelationships in
	frequent mistakes in terms	licensure is sought,	demonstrates a	the field, and applies
	of scientific concepts and	consistent with the	progressive ability	this understanding to
	principles; fails to prepare	National Science	to identify and link	planning and
	adequately to teacher	Education Standards,	major organizing	instruction.
	science content	recommendations of	concepts.	
		the NSTA, and as		
		assessment of the		
		needs of teacher at		
		each level of		
		preparation		
1b. Concepts	Rarely, if ever,	Demonstrates ability to	Thematically	Regularly unifies
and	demonstrates or draws	develop a thematically	unifies concepts	science concepts from
relationship	attention to the broad	unified framework of	from the different	diverse disciplines on
unifying	applicability of science to	concepts across the	traditional	natural science,
science	real-world phenomena;	traditional disciplines	disciplines of	facilitating
domains.	fails to interrelate science	of science education	science in a	development of an
	content areas.	standards.	relevant and	interdisciplinary
			appropriate	understanding of
			manner.	science.
1c. Processes	Fails to provide or draw	Conducts limited but	Significantly	Actively and regularly
of	attention to the scientific	original researching	incorporates design	employs mathematics
investigation	problem-solving process;	science, demonstrating	and use of	and statistics to
in a science	does not speak	the ability to design	investigation and	develop fundamental
discipline	metacognitively about	and conduct open-	problem solving as	concepts in science, to
	nature of process; expect	ended investigations	the context for	analyze and explain
	student to learn merely	and report results in the	instruction in the	data, and to Convey
	from observation of	context of one or more	classroom; engages	the nature of science
	examples.	science disciplines.	students in research	to students.
			projects	
1d.	Places very considerable	Provides evidence of	Uses activities	Actively and regularly
Application of	emphasis on the	the ability to use	employing	employs mathematics
mathematics	mathematical problem-	mathematics and	mathematics and	and statistics to
in science	solving process to the	statistics to analyze and	statistics to develop	develop fundamental
research	exclusion of the inquiry	interpret data in the	fundamental	concepts in science, to
	process; over emphasis on	context of science.	concepts in and	analyze and explain
	verification labs; little		science and to	data.
	emphasis on the use of		analyze and explain	
	mathematics to derive new		data.	
	knowledge.			

NSTA Standard 2: Content Pedagogy

The student teacher creates a community of diverse learner who construct meaning from their science experiences and possess a disposition for further exploration and learning. (PHY 310, 302, 311, 312, 353)

Dimensions	Unacceptable (0)	Basic (1)	Proficient (2)	Accomplished (3)
1a. Science teaching	Teachers in a way	Plans and	Plans for and	Demonstrates a
actions, strategies	that suggests that a	incorporates science	regularly includes	command of
and methodologies.	variety of students	teaching strategies	alternative activities	alternative strategies
	are not present in the	appropriate for	to teach the same	to meet diverse needs
	classroom	learning with diverse	concept; is able to	and systematically
		backgrounds and	identify primary	provides activities
		learning styles.	differences in	that meet those
			learners in the	needs.
			student population.	
5b. Interactions with	Aloof from students;	Demonstrate the	Regularly includes	Addresses the role of
students that promote	does not actively	ability to effectively	group as well as	social and group
learning and	engage students	engage students in	individual activities	interactions as a basis
achievement in	intellectually or	learning science,	to teach science,	for conceptual
collaborative	emotionally; fails to	both individually and	allowing learners	learning and inquiry.
experiences	encourage maximum	in group work of	latitude in organizing	
	student learning.	various kinds.	groups according to	
			their age and	
			background.	
5c. Use of advanced	Fails to take	Uses appropriate	Regularly	Identifies
technology to extend	advantage of	technology,	incorporates	information
and enhance	appropriate and	including computers	available technology	technologies as
learning.	available teaching	to provide science	into instruction.	fundamental to
	technology such as	instruction	Involves student in	teaching, learning
	demonstration		the use of technology	and practice of
	materials, laboratory		for investigating.	science and engages
	equipment, and			students both in use
	computer resources.			of technologies and
				understanding of
				their role in science
				and learning
5d. Use of prior	Does not link current	Identifies common	Begins to	Regularly anticipates
conceptions and	learning with prior	student	systematically	misconceptions and
student interest to	learning; fails to take	misconceptions or	identify and	naive conceptions
promote new	into account students	naïve conceptions in	anticipate student	and uses assessment
learning.	preconceptions; does	the teaching field.	misconceptions and	as basis for
	not engage students		plans activities and	constructing more
	with incongruity		discussions to	scientifically
	when possible to do		address ad modify	acceptable concepts
	so.		them.	and relationships.

NSTA Standard 3: Learning Environments

The student teacher engages students both in studies of various methods of scientific inquiry and in active learning through scientific inquiry. (PHY 310, 311, 312, and 353)

Dimensions	Unacceptable (0)	Basic (1)	Proficient (2)	Accomplished (3)
3a. Questioning	Places emphasis on	Plans and	Regularly requires	Consistently engages
and formulating	answers rather than	implements data-	students to collect,	students in critical
solvable	questions; uses a	based activities	reflect upon and	discussion about the
problems. Student	didactic pedagogy	requiring students to	interpret data, to	results of their
analysis of data	rather than one that is	reflect upon their	report the results of	inquiry,
and	inquiry oriented;	findings, make	their work, and to	interpretations of their
conclusions	teacher-centered	inferences, and link	identify new	results, the
	classroom rather than	new ideas to	problems for	implications of their
	student-centered.	preexisting	investigation.	conclusions and
		knowledge.		possible new
				problems.
3b. Questioning	Acts more like a sage on	Uses questions to	Regularly uses	Skillfully facilitates
and discussion to	the stage rather than a	encourage inquiry	divergent and	classroom discourse
analyze data and	guide on the side; little	and probe for	stimulating	through questioning,
draw conclusions	emphasis on the	divergent student	questioning to define	reflecting on, and
from diverse	questioning and answer-	responses,	problems and	critically analyzing
perspectives.	finding process; teacher	encouraging student	stimulate reflection;	ideas, leading
	monopolizes classroom	questions and	leads students to	students toward a
	discussion or lectures	responding with	develop questions	deeper understanding
	excessively; individual	questions when	appropriate for	of the inquiry process
	activities emphasized	appropriate.	inquiry in a given	itself. Uses questions
	over group activities.		area.	to define problems
				and potential
				solutions.
3c. Reflecting on	Tells student "what they	Plans and	Involves students in	Systematically
and constructing	need to know" rather	implements activities	diverse	integrates
knowledge from	than helping students to	with different	investigations,	investigations with
observations and	learn through scientific	structures for inquiry	analysis of	different formats into
data, utilizing	processes what they	including inductive	investigative	classroom work, and
multiple	need to know; fails to	(exploratory),	structures and	relates student work
strategies.	make use of data	correlational and	discussion of criteria	to research traditions
	collection and	deductive	for analyzing	that typify the various
	interpretation.	(experimental)	outcomes.	sciences.
	~	studies.	~ . <i>u</i>	
3d. Developing	Conveys information	Encourages	Systematically	Skillfully meshes
concepts and	rather than helps	productive peer	provides students	opportunities for
relationships from	students construct it	interactions and	with opportunities to	science-related
observations and	trom observation and	plans both individual	engage in inquiry	inquiry with critical
data.	analysis.	and small group	with peers using a	reflection on the role
		activities to facilitate	variety of formats.	of the individual as an
		inquiry.		inquirer in a
				collective context.

NSTA Standard 4: Safety

The student teacher organizes safe and effective learning environments that promote the success of student and the welfare of all living things, requires and promotes knowledge and respect for safety. (PHY 302, 311, 312, 353)

Dimensions	Unacceptable (0)	Basic (1)	Proficient (2)	Accomplished (3)
4a. Prudent and	Seems to be unaware or	Understands liability	Takes action to	Stays informed of
professional	shows disregard for	and negligence,	prevent hazards and	potential hazards and
practice with	rules of prudent and	especially as applied to	communicates needs	legal concerns and
due regard to	professional conduct;	science teaching and	and potential	communicates with
safety and	puts self, cooperating	can take action to	problems to	other teachers to
liability.	teacher, or school	prevent potential	administrators.	maintain a school
	district at risk of	problems.		environment free of
	liability; fails to quickly			potential problems.
	remediate hazardous			
	situations once			
	identified.			
4b. Safety in	Shows disregard for	Some gaps in safety	Consistently	Always practices safe
regards to	commonly accepted	knowledge. Actively	exercises safe	techniques in the
science teaching	rules of safety.	working to increase	practices in	preparation, storage,
materials.		knowledge of safe	classroom and	usage, and disposal
		practices.	storage of materials.	of materials.
				Emphasizes safety
				practices to students.
4c. Safety in all	Shows positive	Understands and sets	Demonstrates that	Systematically
areas related to	disregard to student	up procedures for safe	safety is a priority in	ensures safety in all
science	health and safety; fails	handling, labeling and	science and other	areas and takes
instruction.	to implement safety	storage of chemicals,	activities; can take	whatever steps are
	procedures or conduct	and electrical	appropriate action in	necessary to ensure
	cost-to- benefit	equipment. Knows	an emergency.	that the school
	evaluations.	actions to take to		science program is
		prevent or report an		conducted safely.
		emergency.		
4d. Treatment	Shows little care for	Knows the standards	Adheres to the	Adheres to the
and ethical use	living specimens; does	and recommendations	standards of the	standards of the
of living	not follow accepted	of the science education	science education	science education
organisms.	norms for ethical	community for the safe	community for	community for
	maintenance and use of	and ethical use and care	ethical care and use	ethical care and use
	living organisms.	of animals for science	of animals; uses	of animals; uses
		instruction.	preserved or live	preserved or live
			animals	animals appropriately
			appropriately in	in keeping with the
			keeping with the age	age of students and
			of students and the	the need for such
			need for such	materials.
			materials.	

NSTA Standard 5: Impact on Student Learning

The student teacher constructs and uses effective assessment strategies to determine the backgrounds and achievements of learners and facilitate their intellectual, social, and personal development. They assess student fairly and equitably, and require that student engage in ongoing self-assessment. (PHY 310, 311, 312, 353)

Dimensions	Unacceptable (0)	Basic (1)	Proficient (2)	Accomplished (3)
5a. Alignment of goals, instruction and outcomes.	Formal and informal assessments improperly aligned or not aligned with stated teaching goals and student performance objectives; non- existent or incomplete objectives.	Identifies and uses the most appropriate methods for gathering information about student learning, based on student needs and characteristics and the goals of instruction.	Employs multiple methods to systematically gather data about student needs, abilities and understanding and reflects upon goals of instruction.	Creates new methods for helping students demonstrate knowledge, and uses results to alter classroom practices.
5b. Use of outcome data to guide and change instruction.	Does not alter teaching on the basis of assessed learning outcomes; fails to remediate inadequate learning as evidenced by poor student performance.	Demonstrates the ability to use multiple strategies to assess teaching and learning authentically, consistent with national standards and goals for science education.	Uses multiple resources for assessment and can cite changes in practices made because of assessment.	Continuously experiments with new assessment techniques, including those suggested in the literature, and reflects on its meaning for altered practice.
5c. Demonstrates effectiveness as reflective practitioner.	Does not reflect upon teaching experiences that might otherwise help to improve practice; fails to complete daily and/or weekly reflections with cooperating teacher.	Engages in reflective self-assessment and develops a system for self-assessment as a practicing teacher.	Engages in reflective self-assessment and uses a system to self- assess, modifying practice and the system of assessment as required.	Regularly modifies and informs practice through multiple self- assessment indicators.
5d. Measurement and evaluation of student learning in a variety of dimensions.	Uses a very limited variety of means to assess student knowledge and intellectual process skills.	Aligns assessment with goals and actions and uses results to alter teaching.	Guides students in formative self- assessment, relating each tool to specific learning outcomes.	Regularly and consistently provides students with varied opportunities to demonstrate their individual learning and reflect on their own learning.

NSTA Standard 6: Professional Knowledge and Skills

The student teacher strives continuously to grow and change, personally and professionally, to meet the diverse needs of their students, school, community, and profession. (PHY 311, 312, 353)

Dimensions	Unacceptable (0)	Basic (1)	Proficient (2)	Accomplished (3)
6a. Knowledge of,	Fails to participate	Understands the	Applies the concept	Works with others
and participation in,	with cooperating	concept of a	of a community of	science professionals
the activities of the	teachers and/or	community of	learners to science	to develop
professional	school faculty in	learners and interacts	teaching and learning	opportunities for
community.	professional	with instructors and	in the school	continuous learning
	development	peers as a member of	environment. Joins	as members of a
	activities, even after	such a community.	state and national	professional
	encouraged to do so.	Participates in	professional	education
	Does not participate	student associations,	associations for	community. Attends
	in regular	workshops	science teachers and	regional, state and
	professional growth	and activities related	regularly reads	some national
	activities such as	to science teaching	publications to	conventions,
	meetings, workshops,	and reads journals of	improve teaching	conferences and
	and/or membership in	professional	and stay abreast of	workshops in science
	professional	associations in the	current events in the	education; takes
	organizations.	field.	field.	leadership or
				participates as a
				presenter in such
				gatherings.
6b. Willingness to	Fails to interact with	Takes personal	Takes responsibility	Takes responsibility
work with students	peers either inside or	responsibility for	for assigned classes	for new science
and new colleagues	outside of school	growth and for	and students and	teachers, student
as they enter the	events/ activities.	assisting others who	works with other	teachers and
profession.		are preparing to	teachers to develop	practicum students
		teach science.	high quality learning	and works with them
			experiences in	collegially to
			science.	facilitate their growth
				and entry into the
				profession.
6c. Willingness to	Fails to comply with	Demonstrates the	Treats colleagues,	Demonstrates a
work with the	reasonable	ability to handle	students,	record of professional
cooperating teacher,	directives	problems and tension	parents, and	integrity and the
other teachers, staff,	promulgated by	calmly and	supervisors with	respect of colleagues,
parents and students.	the cooperating	effectively, and to	respect and takes	administrators,
	teacher or other	relate to peers,	action to solve	parents and students.
	competent and	instructors,	problems amenable	
	authorized school	supervisors, and	to solution.	
	officials.	students with		
		integrity.		

Final Student Teaching Evidence:

- 1. Performance on ISBE Physics Content Test
 - Students must pass the Physics Content Test with a minimum score of 240.
- 2. Performance on edTPA
 - Student must pass the edTPA. A passing score for 2018-2019 academic year is 39. A passing score for 2019-2020 academic year is 41 and will remain at 41 for the foreseeable future.

Specialized courses in the Computational Physics sequence include the following:

- Course Title
 - 318 Methods of Computational Physics
 - 388 Advanced Computational Physics
 - 390 Computational Research in Physics

Objective		
Students will demonstrate an	Assessment 1 ools	Related Courses
advanced level of competency		
<i>IN</i>		
conceptual understanding,	homework problems, exams	PHY 320, 325, 340, 384 and
physical intuition, and	and other assignments are more	other 300-level physics electives,
application of physical laws	detailed and complex	including PHY 318 and 388.
through the application of		
computational methods and		
simulation.		
mathematics (partial differential	sophisticated problems that may	300-level physics (or equivalent
equations, Fourier analysis,	include proofs or rigorous	level engineering) courses and
eigenanalysis, etc.).	derivations completed in	corresponding mathematics
	homework, exams, computer	courses
	projects, or other assignments	
computational physics	computer projects that	PHY 318 and 388 and other 300-
(simulation methods, symbolic	demonstrate application of	level courses
computing, and visualization)	these methods	advanced computational projects
		for physics and/or computer
		courses or research
scientific communication.	written assignments, including	PHY 318 and 388
	homework, computer projects,	research presentations at
	posters, and oral presentations	symposia or conferences
a capstone project.	formal written report and oral	PHY 390
	presentation(s)	

Learning Objectives: Advanced Level: Computational Physics

Direct and Indirect Measures of Student Learning and Proficiency

Direct evidence of student learning is provided by artifacts that are collected during a course, including: exams, pre- and post-testing, papers, lab reports, computer code, electronic notebooks, written homework assignments, capstone projects, recordings of oral presentations, and other equivalent items. It can also include designs and student-fabricated electric circuits or experimental equipment.

The department assessment coordinator will meet with faculty at the beginning of the semester during which a given course is scheduled for review to determine the artifacts that will be collected throughout the semester that are expected to demonstrate student learning for applicable learning objectives. For large courses, artifacts from a representative sample of students (approximately 10 % of the class) will be collected and saved until the end of the semester. For medium-sized courses, artifacts from 6 representative students will be collected. For courses that have less than 6 students, artifacts for all of the students will be collected. The representative sample should accurately reflect the range of quality of work for a given assignment.

Indirect evidence can be provided by surveys, reflective essays, or interviews of various stakeholders, including: students, faculty, alumni. Additional measures are found via department and university records of retention and graduation rates, job placement rates, faculty publications and presentations that include students, co-curricular projects, as well as awards and scholarships or other honors.

In a student's final semester after the student has filed the application for graduation, the graduating student will have an appointment with the department chairperson. The student will first complete an **exit survey** (see Appendix A), which then forms the basis for an exit interview given by the chairperson. The written survey and additional notes taken during the interview will be an important indirect measure. The Assessment Coordinator will also reach out to alumni for discussion and formal surveys concerning their views on their physics education and skills needed in their careers.

Assessment Coordinator

Each year, the department chair will appoint an Assessment Coordinator, who shall:

- maintain and update the department assessment records as outlined in this plan
- coordinate with faculty assigned to the courses to be reviewed during each semester following the schedule given in Appendix B to determine which items will be collected from each course for assessment of the established learning outcomes for that course
- carry out the assessment evaluation for items collected during the previous semester by applying the rubric given in Appendix C
- interview the individual faculty to reflect on student performance in the course and to discuss the outcome of the assessment of direct and indirect evidence of student learning related their course and to establish possible means for course improvement
- present a written or oral general report of the results of the assessments to the department when requested by the department chairperson

- be an active member of the department curriculum committee by helping to bring about datadriven programmatic improvement
- provide data and assist with Academic Program Review carried out by the Academic Review Committee on a periodic basis

Appendix A

Exit Interview Survey

- 1. What are your plans for after graduation (job, grad school, etc.)?
- 2. At this point do you feel your physics degree has helped you accomplish your professional goals?
- 3. What could the physics department have done to provide you better help in accomplishing your goals?

4. How did you decide to choose physics (or physics teaching) for your professional career?

5. How did you decide to choose Illinois State for your undergraduate education?

6. How would you describe your experience here at ISU?

7. With regard to your learning physics, which was your best course and why?

8. In which course do you feel you had the most difficulty in learning physics and why?

9. Do you have any suggestions on better ways to teach physics or computational methods?

10. Were your courses appropriate, helpful, and sufficient to meet your needs?

11. Were the required math courses appropriate, helpful, and sufficient to assist you in your physics studies? Explain.

12. Which general education courses were interesting or helpful to you?

13. Self-reflection on learning

The physics department has defined a set of learning objectives for physics majors. Please rate your level of confidence in your learning on each of the following by circling the appropriate number. Note that 9 is the highest or most advanced level and 1 is the lowest possible level.

	int	roducto	ory	intermediate		advanced			
knowledge of physics concepts	1	2	3	4	5	6	7	8	9
problem solving	1	2	3	4	5	6	7	8	9
creating physical models	1	2	3	4	5	6	7	8	9
laboratory skills	1	2	3	4	5	6	7	8	9
computational skills	1	2	3	4	5	6	7	8	9
research skills	1	2	3	4	5	6	7	8	9
scientific communication: written	1	2	3	4	5	6	7	8	9
scientific communication: oral	1	2	3	4	5	6	7	8	9

14. What are three physics topics that you feel you know very well and can explain to others?

15. What are three physics topics that you have heard about but cannot explain to others?

Appendix B

Course Review Schedule*

Appendix C

Course Review Rubric

Performance Indicator	1. Beginning	2. Intermediate	3. Advanced or Proficient	4. Exemplary
conceptual understanding and application of physical laws	 little knowledge or understanding of physics concepts cannot identify concepts involved in given physical situation cannot properly apply appropriate equations to a given physical situation 	 identifies some physics concepts involved in a physical situation sometimes properly applies appropriate equations for a given physical situation some knowledge of how to apply facts 	 understands and can identify key concepts properly applies appropriate equations adequate knowledge of facts 	 demonstrates full understanding of physics concepts consistently and accurately applies appropriate equations to given physical situations
mathematics	 exhibits little knowledge of the required level of mathematics little knowledge of how to apply factual information in problem-solving 	 correctly applies appropriate mathematical techniques some of the time demonstrates basic understanding of relationships between variables can provide a derivation or proof that is mostly correct 	 correctly applies appropriate mathematical techniques most of the time exhibits a very good understanding of relationships between variables can provide a derivation or proof that is correct 	 correctly applies appropriate mathematical techniques can use multiple approaches to a given problem fully understands relationships between variables can apply mathematical techniques beyond the scope of a given problem
computational physics	 little or no ability to use computer applications (Excel, graphing software, Mathematica, etc.) little or no knowledge of a programming language little or no knowledge of computer simulation techniques little or no knowledge of numerical methods 	 sufficient ability in the use of computer applications can write nearly error-free simple programs in one or more computer languages can create a basic physics simulation demonstrates some knowledge of the methods of computational physics 	 intermediate to advanced ability in the use of computer applications can write nearly error-free intermediate programs in one or more computer languages can create a sophisticated physics simulation demonstrates sufficient knowledge of the methods of computational physics 	 application of significant computational methods in research or class project creation of an advanced physics simulation advanced application of numerical methods

Course Review Rubric (continued)

experimental physics	 no description of experimental procedures, key variables, data acquisition and analysis, or theoretical basis data acquisition contains significant errors or data is stated with unrealistic accuracy no understanding of uncertainty no error analysis missing large amounts of data no comparison with appropriate physical models no discussion of experimental results inappropriate relationships between variables 	 description of procedures is present, but flawed data collection is flawed data acquisition doesn't include information on instrument precision or accuracy data range is significantly limited weak comparison made to theoretical model differences identified, but not explained partial discussion of experimental results 	 adequate experimental design nearly all variables identified data acquisition well formulated and carried out properly theoretical basis of experiment well established adequate comparison made to appropriate model that includes important relationships between variables proper identification of errors and application of uncertainty analysis 	 well thought out experimental design all relevant variables and externalities identified detailed data acquisition procedures, including instrument information, sufficient data collected thorough discussion of results and models discussion of possible improvements for future work
modeling and solving real-world problems	 little knowledge of physical models identified model is inappropriate cannot relate real world situation to a model unable to convert a real-world situation into a model 	 some knowledge of models demonstrates basic understand- ing of relation- ship between models and a real-world situation partially converts real-world situation into a model 	 adequate knowledge of physical models and their relationship to real-world situations can convert a real-world situation into a physical model recognizes limitations to a given model 	 knowledge of most relevant models can create a complete model that converts a real-world situation into an appropriate model with respect to given problem context fully understands the limitations of a given model

Course Review Rubric (continued)