DEPARTMENT OF TECHNOLOGY

PROGRAM ASSESSMENT PLAN

B.S. DEGREE IN ENGINEERING TECHNOLOGY

THEODORE BRANOFF, CHAIRPERSON

KEVIN DEVINE, PROGRAM COORDINATOR

SEPTEMBER 2018

Table of Contents

Learning Outcomes Assessment	3
Program Goals and Plan of Work	7
Appendices	
Appendix A – Example of Employer Follow-up Survey	.12
Appendix B – Example of Senior Exit Survey	.14
Appendix C – Example of Alumni Learning Outcomes Survey	.18
Appendix D – Annual Assessment & Reporting Calendar	.20

Department of Technology Program Assessment Plan B.S. Degree: Engineering Technology

This Engineering Technology degree Program Assessment Plan includes a description of learning outcomes, assessment measures, feedback and continuous improvement mechanisms, and record keeping procedures that guide the Engineering Technology program in continuous improvement. There are two components to the Engineering Technology program assessment. (1) Learning Outcomes Assessment and (2) Program Goals and Plan of Work. Annual assessment data is posted on the Department of Technology website: www.tec.illinoisstate.edu.

Learning Outcomes Assessment

The learning outcomes report, completed is each year, is an aggregate summary of student progress toward meeting identified learning outcomes. The resulting data is reported in a dashboard format (see following page for an example of learning outcomes dashboard), which includes assessment data and a plan for improvement, as necessary. The learning outcomes for the program are reviewed each year for validation by the Engineering Technology program advisory board. Multiple data points are used to assess learning outcomes, as follows:

- 1. An **Employer Survey** seeks data on how well graduates performed in terms of intended learning outcomes. These surveys are conducted on a three-year cycle. (*Appendix A* presents an example of the employer follow-up survey).
- 2. The **Senior Exit Survey** solicits both quantitative and qualitative feedback about the extent to which learning outcomes were achieved. An example of the Senior Exit Survey is presented in *Appendix B*.
- 3. The University Assessment Services conducts the annual **Alumni Survey** and supplies this assessment data to the department. This survey includes questions on the intended learning outcomes for the program shown in *Appendix C*.
- 4. To assess learning outcomes, the Engineering Technology program faculty review an assessment exam given to seniors in the program.

Assessment data on learning outcomes receives oversight in the following ways. Specific learning outcome assessment data initially go to the Program Coordinator who is responsible for (a) documenting and reporting the results, (b) evaluating if the results conform to performance indicators, and (c) deciding, in conjunction with program faculty and advisory committee as appropriate, whatever corrective action needs to be taken. Corrective actions are documented in the learning outcomes assessment dashboard and filed on the Faculty Server. An annual assessment calendar is used to coordinate assessment and feedback events (See *Appendix E*).

Engineering Technology Learning Outcomes

- 1. Interpret and apply basic concepts of materials science such as strength of materials, structural properties, conductivity, and mechanical properties. Perform various non-destructive and destructive materials testing procedures.
- 2. Analyze and apply basic electricity and electronic principles within the various engineering environments and applications such as industrial robots, controls, and other such systems.
- 3. Monitor and control manufacturing processes or other industrial systems. Select appropriate manufacturing processes for product production applications such as forming, molding, separating, conditioning, joining, and finishing.
- 4. Utilize 2-D and 3-D computer-aided design systems to create drawings and models for products, machines, jigs, fixtures, and other mechanical devices used in engineering environments.
- 5. Read and interpret engineering documentation such as blue prints, technical drawings and diagrams, production plans, tooling plans, quality plans, and safety plans.

	Direct Measurement	Indirect Measuren	nents		
Engineering Technology Learning Outcomes The graduate will be able to:	*Assessment Exam - Avg by Category	Employer Survey 2013, 2014, 2015, 2016 (employers n=8, alumni n=10)	Senior Survey (n=24, Fall 2016/Sprin g 2017) (1.0 - 5.0 scale)	Alum Survey	Planned Curricular Actions for Improvement (2017-2018)
 Interpret and apply basic concepts of materials science such as strength of materials, structural properties, conductivity, and mechanical properties. Perform various non-destructive and destructive materials testing procedures. 	(TEC 285, 293) 77%	5 meets expectations 0 below expectations 5 N/A	4.4	N/A	TEC293 will have a new instructor.
2. Analyze and apply basic electricity and electronic principles within the various engineering environments and applications such as industrial robots, controls, and other such systems.	(TEC 240, 263) 85%	9 meets expectations 0 below expectations 1 N/A	4.4	N/A	Minor modifications to TEC240 are being made.
3. Monitor and control manufacturing processes or other industrial systems.	(TEC 233, 285, 240, 263, 392) 83%	8 meets expectations 0 below expectations 2 N/A	4.5	N/A	Enhanced utilization of CNC machining is being implemented in TEC233 and TEC392.
 Select appropriate manufacturing processes for product production applications such as forming, molding, separating, conditioning, joining, and finishing. 	(TEC 233, 285, 392) 82%	6 meets expectations 0 below expectations 4 N/A	4.5	N/A	No action at this time. Objective and self-report measures all positive.
5. Utilize 2-D and 3-D computer-aided design systems to create drawings and models for products, machines, jigs, fixtures, and other	(TEC 216, 392) 85%	8 meets expectations 0 below expectations	4.5	N/A	No action at this time. Objective and self-report measures all positive.

mechanical devices used in engineering environments.		2 N/A					
6. Read and interpret engineering documentation such as blue prints, technical drawings and diagrams, production plans, tooling plans, quality plans, and safety plans.	(TEC 216, 392) 85%	10 meets expectations 0 below expectations 0 N/A	4.7		N/A	No action and self-re positive.	at this time. Objective eport measures all
*Direct Measurement Performance Benchmarks *Performance criteria: at least 75% average in each category indicates good achievement of the learning outcome.		Action benchmark f Survey Data < 3.5/5	for 5.0 scale	Action benchmark for Employer Data < 75% "meets expectations" or above		k for 75% ons" or	
		5 – well above average 4 – above average 3 – average 2 – below average 1 – well below averag	e				

Program Goals and Plan of Work

The Engineering Technology *Program Goals and Plan of Work*, consists of (a) the program mission, (b) program goals, (c) goal alignment with department, college, and university goals, (d) strategies for attaining goals, (e) an annual plan of work, and (f) a report assessing accomplishments (See an example of the *Program Goals and Plan of Work* document on the following page). An assessment of the *Program Goals and Plan of Work* is submitted to the Department of Technology Chair annually at the beginning of the academic year, after developing a plan of work, and to report on work completed from the previous academic year. Follow-up on the assessment of program outcomes data flows first to the Chairperson or Assistant Chairperson who is responsible for documenting and reporting the results in the Department of Technology Annual Assessment Report. As appropriate, results may be further disseminated to the faculty at large, and/or Advisory Committees for further action aimed at program improvement.

Engineering Technology Program Goals

- 1. Provide students with high quality educational experiences by featuring a modern, up-to-date curriculum that will develop the technical and managerial knowledge, skills, and attitudes that are foundational to success as ET professionals.
- 2. Recruit and graduate a diverse group of individuals to support companies and organizations that will employ ET professionals in Illinois and throughout the United States.
- 3. Provide opportunities for students to interface with ET professionals.
- 4. Provide service to companies and organizations that employ ET graduates through applied research, consulting/workshops, and participation in professional organizations.
- 5. Maintain industry and ET alumni relationships in support of the program.

Program Goals and Plan of Work (2016-2017)

Engineering Technology Program

The mission of the program is to prepare technically-oriented managerial professionals and leaders for business, industry, government, and education by articulating and integrating student experiences and core competencies in engineering technology.

	Goal	Strategies	Plan of Work for 2016-2017 (September 2016)	Report on POW 2016-2017
ET Goals	Alignment			(September 2017)
	0			
1. Provide students with	ISU	a. Maintain strong	a. Assemble and conduct a least one	a. Advisory board meeting held April 10,
high quality	Educating	industry input to	advisory board meeting in the 2016/2017	2017
educational experiences	Illinois	program	school year.	b. Student learning was assessed across all
by featuring a modern,	Goal #1,2	curriculum	b. Measure student performance for	learning outcomes via the ET
up-to-date curriculum		decision making.	outcomes assessment and revise	assessment Exam administered
that will develop the	CAST	b. Maintain high	instruction as needed.	during TEC 392.
technical and	Strategic	quality	c. Finalize preparations for ATMAE	c. This task is complete. The ET program
managerial knowledge,	Plan Goal #	curriculum and	accreditation self-study and site visit	received full ATMAE accreditation.
skills, and attitudes that	1, 5	instruction.	d. Attend professional development events,	d. Dr. Devine presented a paper at the
are foundational to		c. Maintain modern	including ASEE regional and national	ASEE EDGD midyear conference,
success as ET	TEC	ET labs.	conferences, ATMAE national	and attended IMTS. Dr. Laingen
professionals	Department		conference, and industry trade shows.	attended IMTS. Dr. Reifschneider
-	Goal 1	d. Maintain highly	e. Update a 5-year equipment and facility	attended the NPE conference. Mr.
		qualified faculty.	plan and seek funding to modernize	Williams attended IMTS.
			software and equipment.	e. A CNC lathe was purchased for use in
			f. Monitor ET enrollment trends.	the ET program. ABB has initiated
			g. Utilize a consignment IRB2600 robot in	the process of donating the IRB2600
			the TEC392 class.	robot that is currently being used in
			h. Offer TEC333	ET courses on consignment.
				f. ET enrollments and applications are
				being carefully monitored by the
				Department of Technology
				management team.
				g. The IRB2600 robot was used during the
				Fall and Spring semesters in TEC392
				on two different projects.
				h. TEC 333 was offered during the Fall
				2016 semester.

2. Recruit and graduate a diverse group of individuals to support companies and organizations that will employ ET professionals in Illinois and throughout the United States.	ISU Educating Illinois Goal # 1,2 CAST Strategic Plan Goal # 1, 6 TEC Department Area 1	 a. Maintain sustainable enrollment in the ET Program at ISU. b. Promote the program to diverse audiences of potential students. c. Promote industry- sponsored scholarships to existing and potential students. 	 a. Update the department Website focusing on developing attractive images of the ET labs. Mobile format b. Post appropriate scholarship opportunities and support student efforts for scholarship awards. c. Pursue opportunities to interact with K-12 students and teachers. 	 a. The ET pages on the department website were updated. b. Scholarship opportunities were advertised by email and personal contact with our students. c. ET and TE&E co-sponsored a booth at the Discover Manufacturing Career Expo in Peoria which was attended by several hundred high school students. The ET Club hosted a group of 2nd grade children in the IML, ET faculty members hosted 40 high school students as part of the Great Plains LIFE Foundation.
3. Provide opportunities for students to interface with ET professionals.	ISU Educating Illinois Goal # 1, 2 CAST Strategic Plan Goal # 1, 6 TEC Dept. Goal 1,3	 a. Facilitate events that promote student and faculty interaction with industry. b. Promote internship opportunities for ET students. c. Create and maintain relationships with companies and personnel that employ ET professionals. 	 a. Promote student involvement in the ET student organization. b. Promote student attendance at industry trade shows. c. Organize field trips to applicable companies. d. Invite ET professionals to visit classes. e. Maintain contact with potential employers. f. Encourage students to pursue and secure internships. g. Help students locate internships/temporary job opportunities. 	 a. Students were encouraged to participate in the ET club. b. Class fieldtrips were taken to IMTS. c. Students took company field trips in TEC285. d. Guest speakers attended TEC233, TEC234, TEC392 & TEC285. e. ET faculty maintain regular contact with many employers. f. Students are being encouraged to get work experience. Student work experience is being verified as a prerequisite to TEC392. g. Emails are sent to the ET list serve announcing internship opportunities. Students are required to gather company names in several ET core classes.

	ISU	a. Tenured or	a.	Promote graduate assistantships to assist	a. ET students are encouraged by ET
4. Provide service to	Educating	tenure-track		with faculty research and ET instruction.	faculty to consider enrolling in the
companies and	Illinois	faculty will	b.	Conduct scholarly activities such as	TEC MS program.
organizations that	Goal # 2,4	engage in		publishing peer reviewed manuscripts and	b. Dr.s Devine and Reifschneider
employ ET graduates		research and		completing research.	published peer-reviewed articles this
through applied	CAST	technology	c.	Provide leadership in professional	year. Dr. Devine created the SMART
research,	Strategic	transfer activities		organizations.	curriculum and certification program
consulting/workshops,	Plan Goal #	that supports the	d.	Conduct training to support regional	for ABB robotics.
and participation in	3, 4	industry.		manufacturing.	c. Dr. Devine was a member of the board
professional		b. Tenured or			of directors of the ASEE/EDGD
organizations.	TEC Dept.	tenure-track			national organization. Dr.
	Goal 2.3	faculty members			Reifschneider is on the Board of
		will maintain			Directors of the Plastics
		participation and			Environmental Division of SPE and
		leadership in			was a session chair for the ANTECH
		relevant			conference.
		organizations,			d. Dr. Reifschneider provided training for
		boards, or			Caterpillar.
		committees.			
		c. Promote student			
		organization			
		participation in			
		industry or			
		community			
		service activities.			

5. Maintain industry and	ISU	a. Maintain	a.	Contribute information to the Department	a. ET events and news were forwarded to
ET alumni	Educating	information		Blog and ET website.	Tec personnel to be posted.
relationships in support	Illinois	distribution to	b.	Develop active participation with related	b. ET faculty members maintain personal
of the Program.	Goal # 3	alums through the		companies.	contact with industry contacts.
_		department	с.	Investigate revised procedures to help	c. This task is ongoing.
	CAST	newsletter and		students locate internships/temporary job	
	Strategic	website.		opportunities.	
	Plan Goal #	b. Encourage			
	4,6	participation of			
		ET alumni in			
	TEC	homecoming			
	Department	events.			
	Goal 2,3	c. Establish			
		relationships with			
		companies who			
		employ ET			
		professionals.			
		d. Provide avenues			
		for internship and			
		graduate			
		recruitment.			

Appendix A: Example of Employer Survey

Engineering Technology Employer Survey

ISU Engineering Technology Employer Surv

Page 1

6/1/11 1:42 PM

Engineering Technology Employer Survey

As part of our continuous quality improvement process and accreditation requirements, we would like to know your perceptions on how well prepared our graduates are to apply Engineering Technology knowledge, skills, and attitudes on the job.

If you are not the appropriate person to complete this survey, would you please forward to the individual in your firm who supervises or is knowledgable about the performance of the ISU graduate.

This brief survey has two parts: (a) ratings of 6 individual competencies that graduates should demonstrate, and (b) an open ended section for your comments and suggestions. **Please complete a separate survey for each ISU Engineering Technology graduate** who has worked for your firm for ten (10) years or less. All responses are completely confidential. Anticipated time to complete the survey is less than 10 minutes.

Thank you very much for your feedback on the quality of our Engineering Technology graduates. Your input is very important to our program success!

1. How long has the (or was the) ISU Integrated Manufacturing Systems graduate been employed by your firm?

OLess than 1 year

- 2 years
- 3 years
- ○4 years
- 05-10 years

Instructions for questions 2 to 7:

In the left-hand column is a listing of competencies (knowledge, skills, and attitudes) that should be demonstrated by graduates of the Integrated Manufacturing Systems program in the Department of Technology at Illinois State University (ISU). For each of the competencies, please indicate the level of preparation as:

Excellent - Good - Neutral - Fair - Poor - Not Applicable.

2. Interpret and apply basic concepts of materials science such as strength of materials, structural properties, conductivity, and mechanical properties. Perform various non-destructive and destructive materials testing procedures.

Excellent	Good	Neutral	Fair	Poor	Not Applicable
-----------	------	---------	------	------	-------------------

https://survey.lilt.ilstu.edu/Print.aspx?SurveyID=I2KI5541&Title=Y&Breaks=N&AIIPages=Y&Pages=

Page 1 of 2

Engineering	Technology	Employer	Survey
-------------	------------	----------	--------

Materials Testing O O O O	0
---------------------------	---

3. Analyze and apply basic electricity and electronic principles within the various manufacturing environments and applications such as industrial robots, controls, and other such systems.

	Excellent	Good	Neutral	Fair	Poor	Not Applicable
Electronics	0	0	0	0	0	0

4. Monitor and control manufacturing processes or other industrial systems.

	Excellent	Good	Neutral	Fair	Poor	Not Applicable
Process Control	0	0	0	0	0	0

5. Select appropriate manufacturing processes for product production applications such as forming, molding, separating, conditioning, joining, and finishing.

	Excellent	Good	Neutral	Fair	Poor	Not Applicable
Process selection	0	0	0	0	0	0

6. Utilize 2-D and 3-D computer-aided design systems to create drawings and models for products, machines, jigs, fixtures, and other mechanical devices used in manufacturing environments.

	Excellent	Good	Neutral	Fair	Poor	Not Applicable
CAD	0	0	0	0	0	0

7. Read and interpret manufacturing documentation such as blue prints, technical drawings and diagrams, production plans, tooling plans, quality plans, and safety plans.

	Excellent	Good	Neutral	Fair	Poor	Not Applicable
Plan Interpretation	0	0	0	\bigcirc	0	0

8. Additional comments, clarifications or suggestions for the ISU Integrated Manufacturing Systems program:

Appendix B: Example of Senior Exit Survey

Department of Technology Senior Exit Survey

Department of Technology Senior Survey (ET)

Page 1

6/1/11 1:42 PM

Department of Technology Senior Exit Survey

As part of our continuous quality improvement process, we would like to know your perception of how well we have performed as a department and as an academic degree program.

This brief survey has two parts: (a) ratings of general perceptions about the department and its quality, and (b) ratings on how well you achieved the intended learning outcomes for your major. Anticipated time to complete the survey is about 15 minutes.

Thank you very much for your feedback on the quality of the Department of Technology and its programs of study!

Instructions for questions 1 to 17:

This section includes ratings of your perception about the Department of Technology and its quality.

1. Faculty were helpful when I needed assistance.* Strongly Strongly Neutral Disagree Agree Agree Disagree \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc Faculty 2. Overall, the quality of instruction was excellent in TEC courses.* Strongly Strongly Neutral Disagree Agree Disagree Agree 0 \bigcirc \bigcirc \bigcirc \bigcirc Quality 3. I was treated fairly in my dealings with faculty.* Strongly Strongly Agree Neutral Disagree Disagree Agree 0 \odot \odot \bigcirc \bigcirc Fairness 4. Faculty were experts in their subject matter areas.* Strongly Strongly Agree Neutral Disagree Agree Disagree Expertise \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc

5. The department's computer resources met my needs.*

https://survey.lilt.ilstu.edu/Print.aspx?SurveyID=I2K36841&Title=Y&Breaks=N&AIIPages=Y&Pages=

Page 1 of 5

Department of Technology Senior Exit Survey

		Strongly Agree	Agree	Ne	eutral	Disagree	Strongly Disagree
	Computers	0	0		0	0	Ō
6.	Overall, I was satisfied w	with the qual	lity of labora	itory equipn	nent.*		
		Strongly Agree	Agree	Ne	eutral	Disagree	Strongly Disagree
	Lab Equipment	0	0		0	0	0
7.	Lab hours provided acce	ss to equipn	nent to com	plete assigr	nments.		
		Strongly Agree	Agree	Ne	eutral	Disagree	Strongly Disagree
	Lab Access	0	0		0	\odot	0
8.	I was able to get my int	o TEC course	es in a timel	y manner.*			
	<u> </u>	Strongly	Agree	Ň	eutral	Disagree	Strongly
	Course Schedule	O	0		0	0	O
9.	TEC Advisement Office r	esponded to	my inquirie	s in a timel	y manner.*		
		Strongly Agree	Agree	Ne	eutral	Disagree	Strongly Disagree
	Timely Advisement	0	0		0	0	0
10.	My TEC advisor was kno	wledgeable	of my acade	mic plan.*			
		Strongly Agree	Agree	Ne	eutral	Disagree	Strongly Disagree
	Advisement Expertise	0	0		0	0	0
11.	My internship was a valı	uable part of	⁻ my educati	on.*			
							Did not
		Strongly Agree	Agree	Neutral	Disagree	Strongly Disagree	participate in an
	Internship	0	0	0	0	0	O
10						- b :	
12.		. organizatio	ns were a Va	aiuable part	. of my educa	au011.*	Did not
		Strongly Agree	Agree	Neutral	Disagree	Strongly Disagree	participate in student organization
	TEC Student Organizations	0	0	0	0	0	Ο

https://survey.lilt.ilstu.edu/Print.aspx?SurveyID=I2K36841&Title=Y&Breaks=N&AIIPages=Y&Pages=

Page 2 of 5

Recommendation

13. My TEC major greatly expanded my career options.*

		Strongly Agree	Agree	Neutral	Disagree	Strongly Disagree
	Career Options	0	0	0	0	0
14.	The content of my TEC cou	ırses was state	-of-the-art.*			
		Strongly Agree	Agree	Neutral	Disagree	Strongly Disagree
	Course Content	0	0	Ο	0	0
15.	Overall, I greatly increased	l my knowledge	e and skills as a	a result of my T	EC major.*	
		Strongly Agree	Agree	Neutral	Disagree	Strongly Disagree
	Personal Skills	0	0	Θ	0	0
16.	I would recommend TEC to	o a good friend	or family mem	ber.*		
		Strongly Agree	Agree	Neutral	Disagree	Strongly Disagree

17. Would you care to share any additional comments about your experiences with the Dept of Technology?

 \odot

 \bigcirc

 \bigcirc

 \bigcirc

Instructions for questions 18 to 27:

 \bigcirc

This section includes ratings on how well you achieved the intended learning outcomes for your major, as well as questions about your job search.

18. I am able to interpret and apply basic concepts of materials science such as strength of materials, structural properties, conductivity, and mechanical properties. I am able to Perform various nondestructive and destructive materials testing procedures.*

	Strongly Agree	Agree	Neutral	Disagree	Strongly Disagree
Materials Testing	0	0	0	0	0

19. I am able to analyze and apply basic electricity and electronic principles within the various manufacturing environments and applications such as industrial robots, controls, and other such systems.*

Strongly	Aaree	Neutral	Disagree	Strongly
Agree	Agree	Neutral	Disagree	Disagree

https://survey.lilt.ilstu.edu/Print.aspx?SurveyID=I2K36841&Title=Y&Breaks=N&AllPages=Y&Pages=

Page 3 of 5

artment of Technology Senior Exit S	Survey				6	5/1/11 1:42 PM
Electronics	0	0	0	0	0	
20. I am able to monit	or and control manufa	cturing proc	esses or other i	ndustrial systen	ns.*	
	Strongly Agree	Agree	Neutral	Disagree	Strongly Disagree	
Process Control	0	0	0	0	0	
21. I am able to select forming, molding, s	appropriate manufact separating, conditionin	uring proces g, joining, a	ses for product nd finishing.*	production app	lications such a	S
	Strongly Agree	Agree	Neutral	Disagree	Strongly Disagree	
Process selection	0	0	0	0	0	
22. I am able to utilize products, machines	2-D and 3-D computes, jigs, fixtures, and ot	er-aided des her mechani	ign systems to cal devices use	create drawings d in manufactur	s and models fo ring environmer	or nts.*
	Strongly Agree	Agree	Neutral	Disagree	Strongly Disagree	
CAD	0	\odot	0	0	0	
	Strongly Agree	Agree	Neutral	Disagree	Strongly Disagree	
	Agree	Agree	Neutral	Disagree	Disagree	
Plan Interpretation	0	0	0	0	0	
24. Please provide any Technology/Manufa	feedback about the in acturing Systems.	struction an	d your learning	related to Engi	neering	
25. Who or what influe	nced you in deciding to	o pursue the	e TEC program a	at ISU?*		
Influences						
26. At what stage are y	you in finding a positio	n in your ma	ajor field?			
	Accepted an o	Ha offer tenta off	ve ative Inter er	viewing	Have not started searching	
Job Search	0	0		0	0	

https://survey.lilt.ilstu.edu/Print.aspx?SurveyID=I2K36841&Title=Y&Breaks=N&AllPages=Y&Pages=

Page 4 of 5

Appendix C: Example of Alumni Learning Outcomes Survey

2011 Integrated Manufacturing Systems

							Page 1
1.	Please indicate how well the IMS sec	quence prep	oared you t	o perform e	ach skill.		
		Well above average	Above average	Average	Below average	Well below average	N/A
	Interpret and apply basic concepts of materials science such as strength of materials, structural properties, conductivity, and mechanical properties.	0	0	0	0	0	0
	Perform various non-destructive and destructive materials testing procedures.	0	0	0	0	0	0
	Analyze and apply basic electricity and electronic principles within the various manufacturing environments and applications such as industrial robots, controls, and other such systems.	0	0	0	0	0	0
	Monitor and control manufacturing processes or other industrial systems.	C	0	C	0	C	C

2.	Please indicate how well the IMS sec	quence prep	oared you t	o perform e	ach skill.		Page 2
		Well above average	Above aver age	Average	Below aver age	Well below average	N/A
	Select appropriate manufacturing processes for product production applications such as forming, molding, separating, conditioning, joining, and finishing.	0	0	0	0	0	0
	Utilize 2-D and 3-D computer- aided design systems to create drawings and models for products, machines, iias, fixtures, and other	0	0	0	0	0	0

mechanical devices used in manufacturing environments.						
Read and interpret manufacturing documentation such as blueprints, technical drawings and diagrams,	C	0	C	0	0	0
production plans, tooling plans, quality plans, and safety plans.						

Date	Activity	Accountable
As appropriate by course schedule	IDEA student ratings of instruction (November and April).	Secretary
As appropriate	Share assessment data with program and/or program advisory committees	Program Coordinator
As appropriate	Faculty Retreat - Review annual assessment data and establish improvement priorities.	Chair
April	Conduct TEC Senior Student Exit Survey in each capstone course.	Advisor
April	Organize follow-up survey of employers (minimum 3-year cycle)	Asst Chair & Secretary
April	Mail pre-survey letter to alumni.	Secretary
June	TEC Senior Student Exit Survey results and Employer Survey results distributed to faculty.	Advisor, Asst. Chair
July 30	Alumni data distributed to coordinators	Asst. Chair
August	Coordinators meeting to discuss new assessment data and review assessment process	Asst. Chair
September/October	Organize and conduct scheduled Peer Teaching Observations.	Asst. Chair
November 15	Program Coordinators submit the annual <i>Learning</i> <i>Outcomes Report</i>	Program Coordinator
November 15	Program Coordinators submit the annual <i>Program Goals</i> <i>Report and Plan of Work</i>	Program Coordinator
December 30	Submit annual TEC Assessment Report to the University Assessment Services (UAS)	Asst. Chair
December 30	Department of Technology Annual Report and Consolidated Annual Budget Report	Chair

Appendix D: Annual Assessment & Reporting Calendar